Question 1
Beskou die volgende gedeeltelik voltooide variansie-analise tabel:/ Consider the following
partially completed analysis of variance table:
Bron/Source
Behandelings/Treatments
Blokke/ Blocks
Residue/ Residuals
Totaal/Total
SS
vg /df
MS
Ftab
(a)
36,92
6,27
(b)
2
(c)
6
(d)
0,32
(e)
(f)
(g)
(h)
Op ? = 0.05 gee die waarde by (g)/ At ? = 0.05 give the value at (g)
10.92
99.9
3
9.78
5.14
19.33
Question 2
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of
compact cars, midsize cars, and full – size cars. It collects a sample of three for each of the
treatments (car types). Using the hypothetical data provided below, test whether the mean
pressure applied to the driver’s head during a crash test is equal for each type of car. Use ? =
1%. / Veronderstel die Nationale Vervoer Veiligheid Raad ( NVVR) wil die veiligheid toets
van kompakte motors, middelklas motors en groot motors. Hulle neem ‘n steekproef van
drie van elk van die motor tiepes ( behandelings ). Gebruik die onderstaande hipotesiese
data om te toets of die drukking wat op die bestuurder se hoof toegepas word tydens ‘n
ongeluktoets gelyk is by alle tiepe motors. Gebruik ? = 1%.
Compact cars Midsize cars Full – size
cars
643
469
484
655
427
456
702
525
402
Calculate SST. / Bereken SST
2 616 989
96 303.556
86 049.55
6
2 606 735
4 763
Question 3
Consider the following partially completed ANOVA: / Beskou die volgende gedeeltelik voltooide
ANOVA:
Source of variation/Bron
van variasie
Treatments/Behandelings
ANOVA
df/vg
MS
SS
53.1
(a)
(b)
Errors
Total/Totaal
(c)
12
14
(d)
6.375
Fstat.
Ftab.
(e)
(f)
Give the value at (f), using ? = 0.01. / Gee die waarde by (f). Neem ? = 0.01.
19.41
6.93
2.53
99.42
3.89
Question 4
Gegee die volgende Anova tabel, bereken hoeveel waarnemings (N) daar in die eksperiment was.
/ Given the following Anova table, calculate how many observations (N) there was in the
experiment.
ANOVA
Bron van
variasie/
Source of
variation
Behandelings /
Treatments
Blokke /
Blocks
Fout / Error
vg / df
SS
MS
Fc
Ft
3
17.76
C
G
J
A
52.71
D
H
K
15
B
E
I
Totaal / Total
23
103.45
F
25
24
23
22
Geeneen van bogenoemde. / None of the above
Question 5
Many businesses have music piped into the work areas to improve the environment. At a
company an experiment is performed to compare different types of music. Three types of music
– country, rock and classical – are tried each on four randomly selected day. Each day the
productivity, measured by the number of items produced, is recorded. The results appear below:
/ Baie besighede het musiek ingebring in die werkplek om die omgewing te verbeter. By
‘n besigheid is ‘n ekspriment uitgevoer om die verskillende tiepes musiek te vergelyk.
Drie tiepes musiek – country, rok en klassiek – word gespeel op vier ewekansige gekose
dae. Elke dag word die produktiwiteit gemeet deur die aantal items wat geproduseer
word. Die resultate verkyn onder:
Country
Rock
Classical
857
791
824
801
753
847
795
781
881
842
776
865
Can we conclude from this information that the mean number of items produced differs for at
least two of the three types of music? Calculate SSE. / Kan ons tot die gevolgtrekking uit
hierdie informasie kom dat die gemiddelde aantal items verskil vir tenminste twee van die
drie tiepes musiek? Test at 5% significance level. / Toets by ‘n 5% betekenispeil. Bereken
SSE.
5 358.25
12 698
595.3611
18 056.25
8 024 580.
75
Question 6
As nul in die interval wat bepaal of daar verskille tussen behandelings is ingesluit is, dan kan ons
aarvaar dat die behandelings verskil. / If zero is included in the interval for determining
whether the treatments differ then we can assume that the treatments do differ.
Waar / True
Vals / False
Question 7
Beskou die volgende gedeeltelik voltooide eenrigting variansie-analise tabel:/ Consider the
following partially completed one-way analysis of variance table:
Bron van variasie/ SS
Source of variation
Behandelings/
(a)
Treatments
Residue/
663.87
Residuals
Totaal/Total
848.25
vg
df
5
MS
F
Ftab
(c)
(e)
(f)
(b)
(d)
15
Veronderstel dat die betekenispeil 1% is. Die ontbrekende waarde aangedui deur (b) is: _____
/ Assume that the level of significance is 1%. The missing value indicated by (b) is: _______
20
10
184.34
36.876
Question 8
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of
compact cars, midsize cars, and full – size cars. It collects a sample of three for each of the
treatments (car types). Using the hypothetical data provided below, test whether the mean
pressure applied to the driver’s head during a crash test is equal for each type of car. Use ? =
1%. / Veronderstel die Nationale Vervoer Veiligheid Raad ( NVVR) wil die veiligheid toets
van kompakte motors, middelklas motors en groot motors. Hulle neem ‘n steekproef van
drie van elk van die motor tiepes ( behandelings ). Gebruik die onderstaande hipotesiese
data om te toets of die drukking wat op die bestuurder se hoof toegepas word tydens ‘n
ongeluktoets gelyk is by alle tiepe motors. Gebruik ? = 1%.
Compact cars Midsize cars Full – size
cars
643
469
484
655
427
456
702
525
402
Calculate SSE. / Bereken SSE.
96 303.55
6
86 049.55
6
10 254
4 763
2 606 735
Question 9
Gegee die volgende Anova tabel, bereken die waarde van D. / Given the following Anova table,
calculate the value of D.
ANOVA
Bron van
variasie/
Source of
variation
Behandelings /
Treatments
Blokke /
Blocks
Fout / Error
vg / df
SS
MS
Fc
Ft
3
17.76
C
G
J
A
52.71
D
H
K
15
B
E
I
Totaal / Total
23
103.45
F
3.51
10.54
7.26
0
None of the above
Question 10
Consider the following ANOVA table: / Beskou die volgende ANAVA tabel:
Source
SS
df
MS
F
Ftab
Treatment
2.6577
(b)
(c)
Errors
(a)
(c)
0.0300
Total
2.8077
9
(d)
(e)
We test for the significance difference amongst the treatment means at 0.01. Give the value of
(e). / Ons toets vir betekenisvolle veskille tussen die gemiddeldes van die behandelings by 0.01.
Bereken die waarde van (e).
22.1467
11.39
15.52
5.19
6.26